A short description of the post.
Download \(CO_2\) emissions per capita from Our World in Data into the directory for this post.
Assign the location of the file to file.csv
. The data should be in the same directory as this file.
file_csv <- here("_posts",
"2021-03-01-reading-and-writing-data",
"co-emissions-per-capita.csv")
emissions <- read_csv(file_csv)
emissions
.
emissions
# A tibble: 22,383 x 4
Entity Code Year `Per capita CO2 emissions`
<chr> <chr> <dbl> <dbl>
1 Afghanistan AFG 1949 0.00191
2 Afghanistan AFG 1950 0.0109
3 Afghanistan AFG 1951 0.0117
4 Afghanistan AFG 1952 0.0115
5 Afghanistan AFG 1953 0.0132
6 Afghanistan AFG 1954 0.0130
7 Afghanistan AFG 1955 0.0186
8 Afghanistan AFG 1956 0.0218
9 Afghanistan AFG 1957 0.0343
10 Afghanistan AFG 1958 0.0380
# … with 22,373 more rows
emissions
data, Then use clean names
from the janitor package to make the names easier to work with assign the output to tidy_emissions
show the first ten rows of tidy_emissions
tidy_emissions <- emissions %>%
clean_names()
tidy_emissions
# A tibble: 22,383 x 4
entity code year per_capita_co2_emissions
<chr> <chr> <dbl> <dbl>
1 Afghanistan AFG 1949 0.00191
2 Afghanistan AFG 1950 0.0109
3 Afghanistan AFG 1951 0.0117
4 Afghanistan AFG 1952 0.0115
5 Afghanistan AFG 1953 0.0132
6 Afghanistan AFG 1954 0.0130
7 Afghanistan AFG 1955 0.0186
8 Afghanistan AFG 1956 0.0218
9 Afghanistan AFG 1957 0.0343
10 Afghanistan AFG 1958 0.0380
# … with 22,373 more rows
tidy_emissions
THEN -use filter
to extract rows with year == 2000
THEN -use skim
to calculate the descriptive statistics.
Name | Piped data |
Number of rows | 219 |
Number of columns | 4 |
_______________________ | |
Column type frequency: | |
character | 2 |
numeric | 2 |
________________________ | |
Group variables | None |
Variable type: character
skim_variable | n_missing | complete_rate | min | max | empty | n_unique | whitespace |
---|---|---|---|---|---|---|---|
entity | 0 | 1.00 | 4 | 32 | 0 | 219 | 0 |
code | 12 | 0.95 | 3 | 8 | 0 | 207 | 0 |
Variable type: numeric
skim_variable | n_missing | complete_rate | mean | sd | p0 | p25 | p50 | p75 | p100 | hist |
---|---|---|---|---|---|---|---|---|---|---|
year | 0 | 1 | 2000.00 | 0.00 | 2e+03 | 2000.00 | 2000.00 | 2000.00 | 2000.00 | ▁▁▇▁▁ |
per_capita_co2_emissions | 0 | 1 | 5.06 | 6.74 | 2e-02 | 0.71 | 2.82 | 7.97 | 58.39 | ▇▁▁▁▁ |
# A tibble: 12 x 4
entity code year per_capita_co2_emissions
<chr> <chr> <dbl> <dbl>
1 Africa <NA> 2000 1.11
2 Asia <NA> 2000 2.40
3 Asia (excl. China & India) <NA> 2000 3.35
4 EU-27 <NA> 2000 8.46
5 EU-28 <NA> 2000 8.61
6 Europe <NA> 2000 8.48
7 Europe (excl. EU-27) <NA> 2000 8.47
8 Europe (excl. EU-28) <NA> 2000 8.19
9 North America <NA> 2000 14.6
10 North America (excl. USA) <NA> 2000 5.39
11 Oceania <NA> 2000 12.6
12 South America <NA> 2000 2.32
filter
-use select
change the year
-use remane
to change entity
to country
-assign the output to emissions_2019
per_capita_co2_emissions
-start with emissions_2019
then -use slice_max
-assign output to max_15_emitters
max_15_emitters <- emissions_2000 %>%
slice_max(per_capita_co2_emissions, n=15)
per_capita_co2_emissions
? -start with emissions_2019
then -use slice_min
-assign output to min_15_emitters
min_15_emitters <- emissions_2000 %>%
slice_min(per_capita_co2_emissions, n=15)
bind_rows
to bind together the max_15_emitters
and min_15_emitters
-assign the output to max_min_15
max_min_15 <- bind_rows(max_15_emitters,min_15_emitters)
max_min_15
to 3 file formats.
max_min_15 %>% write_csv("max_min_15.csv") # comma-separated values
max_min_15 %>% write_tsv("max_min_15.tsv") # tab separated
max_min_15 %>% write_delim("max_min_15.psv",delim = "1") #pipe-separated
max_min_15.csv <- read_csv("max_min_15.csv") # comma-separated values
max_min_15.tsv <- read_tsv("max_min_15.tsv") # tab separated
max_min_15.psv <- read_delim("max_min_15.psv",delim = "1") # pipe-separated
setdiff
to check for any differences among max_min_15.csv
,max_min_15.tsv
,max_min_15.psv
setdiff(max_min_15.csv,max_min_15.tsv,max_min_15.psv)
# A tibble: 0 x 3
# … with 3 variables: country <chr>, code <chr>,
# per_capita_co2_emissions <dbl>
max_min_15_plot_data <- max_min_15 %>%
mutate(country = reorder(country, per_capita_co2_emissions))
max_min_15_plot_data
ggplot(data = max_min_15_plot_data, aes(x= per_capita_co2_emissions, y= country)) +
geom_col(fill = "blue", stat = "identity") +
labs(title = "The top 15 and bottom 15 per capita CO2 emissions",
subtitle = "for 2000",
x= NULL, y= NULL)
ggsave(filename = "preview.png", path = here("_posts","2021-03-01-reading-and-writing-data"))