Data visualization, part 2. Code for Quiz 8.
ggplot(data = mpg) +
geom_point(aes(x = displ, y = hwy)) +
facet_wrap(facets = vars(manufacturer))
ggplot(mpg) +
geom_bar(aes(y = manufacturer)) +
facet_grid(vars(class), scales = "free_y", space = "free_y")
spend_time <- read_csv("https://estanny.com/static/week8/spend_time.csv")
p2 <- spend_time %>%
ggplot() +
geom_col(aes(x = year, y = avg_hours, fill = activity)) +
labs(subtitle = "Avg hours per day: 2010-2019", x = NULL, y = NULL)
p2
p_all <- p1 / p2
p_all
p_all_no_legend <- p_all & theme(legend.position = 'none')
p_all_no_legend
p_all_no_legend +
plot_annotation(title = "How much time Americans spent on selected activities",
caption = "Source: American Time of Use Survey, https://data.bls.gov/cgi-bin/surveymost?tu")
p5 <- p4 + coord_cartesian(ylim = c(0, 6))
p5
p6 <-
spend_time %>%
ggplot() +
geom_point(aes(x = year, y = avg_hours, color = activity, group = activity)) +
geom_smooth(aes(x = year, y = avg_hours, color = activity, group = activity)) +
scale_x_continuous(breaks = seq(2010, 2019, by = 1)) +
coord_cartesian(ylim = c(0, 6)) +
labs(x = NULL, y = NULL)
p6
( p4 | p5 ) / p6
ggsave(filename = "preview.png",
path = here::here("_posts", "2021-04-05-exploratory-analysis-2"))